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Abstract

A multi-phase smoothed particle hydrodynamics (SPH) method for both macroscopic and mesoscopic flows is
proposed. Since the particle-averaged spatial derivative approximations are derived from a particle smoothing function
in which the neighboring particles only contribute to the specific volume, while maintaining mass conservation, the new
method handles density discontinuities across phase interfaces naturally. Accordingly, several aspects of multi-phase inter-
actions are addressed. First, the newly formulated viscous terms allow for a discontinuous viscosity and ensure continuity
of velocity and shear stress across the phase interface. Based on this formulation thermal fluctuations are introduced in a
straightforward way. Second, a new simple algorithm capable for three or more immiscible phases is developed. Mesocopic
interface slippage is included based on the apparent slip assumption which ensures continuity at the phase interface. To
show the validity of the present method numerical examples on capillary waves, three-phase interactions, drop deforma-
tion in a shear flow, and mesoscopic channel flows are considered.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For decreasing length scales and increasing time scales, multi-phase forces, such as those caused by viscosity
difference or surface tension, may become comparable to inertial forces even though the overall flow can be
considered as macroscopic. When length scales decrease further to the order of lm or smaller the flow may
become mesoscopic. In a mesoscopic flow multi-phase forces usually dominate inertial forces, and thermal
fluctuations affect the flow behavior strongly. Many industrial, environmental, and biological applications
involve macroscopic and mesoscopic flow problems with the presence of multiple fluid phases. A variety of
methods has been developed to study the above problems numerically. In general, there are two main
approaches which can be distinguished by the way of handling phase interfaces: one is the Eulerian approach,
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such as the volume of fluid (VOF) method [36], the level set method [39] and the lattice Boltzmann method
(LBM) [2]; the other is the Lagrangian approach, such as vortex methods [6,22], molecular dynamics (MD)
[21], and dissipative particle dynamics (DPD) [18].

The smoothed particle hydrodynamics (SPH) method is a fully Lagrangian, grid free method in which a
smoothing kernel is introduced to approximate functions and their spatial derivatives originating from the
interactions carried by neighboring particles. The SPH algorithm itself is similar to that of MD but uses addi-
tional thermodynamic variables which are obtained by a coarse graining procedure from the underlying
microscopic (molecular) physics. Since its introduction by Lucy [25] and Gingold and Monaghan [12], SPH
has been applied to a wide range of macroscopic flow problems [26]. Recently, the method has been extended
to smoothed dissipative particle dynamics (SDPD) for mesoscopic problems [9]. Unlike DPD [8,16], SDPD
allows to choose an equation of state and to specify transport coefficients directly. Thermal fluctuations
can also be included in a physically consistent way, by which the fluctuation magnitude increases naturally
while the physical scale of the problem decreases to the mesoscopic scale.

Despite its fully Lagrangian property, when the standard formulation of SPH is applied to multi-phase flows
only small density differences are permitted between the considered phases because it is implicitly assumed that
the density gradient is much smaller than that of the smoothing kernel [27,28]. As a remedy, Richie and Thomas
[35] suggest a summation of the particle-averaged pressure, not density, to handle large density gradients. How-
ever, their method does not satisfy mass conservation. Colagrossi and Landrini [5] modify the approximation
form of spatial derivatives to diminish the effects of large density difference across the interface. However, since
the density summation is replaced by a non-conservative density evolution equation mass conservation is not
satisfied either. Although the conservation errors are decreased somewhat by a special density re-initialization
approach, they may accumulate and affect the flow behavior considerably in long time computations.

In this paper, the basic approximations for particle-averaged spatial derivatives are derived from a par-
ticle smoothing function in which neighboring particles only contribute to the specific volume but not to the
density. The resulting algorithm resolves a density discontinuity at a phase interface naturally and satisfies
mass conservation since a density summation equation is employed. With the new algorithm several aspects
of multi-phase interactions are addressed. First, newly formulated viscous terms allow for a viscosity discon-
tinuity and ensure continuity of velocity and shear stress across the phase interface. Based on this formu-
lation mesoscopic thermal fluctuations are introduced in a straightforward way. Second, a new algorithm
capable of handling three or more immiscible phases is developed. It is simple and conservative, and circum-
vents the difficulties of calculating the normalized interface direction and curvature near the fringe of the
interface. Furthermore, mesoscopic interface slippage is modeled based on the apparent-slip assumption
which ensures continuity at the phase interface. In this paper, the isothermal form of the Navier–Stokes
equations is considered. The extension of the method to include a transport equation for energy is
straightforward.
2. Method

We consider the isothermal Navier–Stokes equations on a moving Lagrangian grid
dq
dt

¼ �qr � v; ð1Þ

dv

dt
¼ g� 1

q
rp þ Fþ Fð1Þ

q
; ð2Þ
where q, v and g are material density, velocity and body force, respectively. A simple equation of state is
p = �jTV in which jT is the isothermal compressibility. It can be rewritten as
p ¼ a2q. ð3Þ

When Eqs. (1) and (2) are used for modeling of low Reynolds number incompressible flows with the artificial-
compressibility method a is equal to the artificial speed of sound. An alternative equation of state for incom-
pressible flows is
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p ¼ p0
q
q0

� �c

þ b; ð4Þ
where p0, q0, c and a are parameters. The parameters in Eqs. (3) and (4) may be chosen based on a scale anal-
ysis [26,29,30] so that the density variation is less than a given value. F denotes the viscous force
F ¼ 1

q
r �PðmÞ; ð5Þ
where the shear stress is P(m) = g($v + $vT) if the bulk viscosity is assumed as f = (2/d)g, and d is the spatial
dimension. For incompressible flow the viscous force simplifies to
F ¼ mr2v; ð6Þ

where m = g/q is the kinematic viscosity. F(1) denotes the surface force which acts at the interface only. For an
immiscible mixture the surface force is given as
Fð1Þ ¼ aðr � n̂Þn̂; ð7Þ

where a is surface-tension coefficient, j ¼ r � n̂ and n̂ are curvature and normalized interface direction, respec-
tively. Note that body force, pressure, and surface force are conservative forces. Since diffusion effects are
neglected in the current model dissipative effects are due to viscous forces only.

2.1. Smoothed particle in a multi-phase mixture

For an S-phase mixture we introduce the smoothing function for particle i
viðrÞ ¼
W ðr� ri; hÞP

kW ðr� rkÞ
¼ W iðrÞ

rðrÞ ; ð8Þ
where ri gives the position of particle i, k = 1, . . .,N, N is the total particle number and h is the smoothing
length. W(r) is a generic shape function known as the SPH smoothing kernel which is radially symmetric
and has the properties �W(r � r 0,h) dr 0 = 1 and limh ! 0 W(r � r 0,h) = d(r � r 0). r(r) is a measure of the particle
number density which has a larger value in a dense particle region than in a dilute particle region [20]. vi(r) has
the same form as the moving-least-square (MLS) approximation that reproduces the constant function, which
is called Shepherd function [40]. In Flekkøy et al. [11] and Serrano and Español [37] vi(r) is employed for
Voronoi-type DPD formulations. Note that vi(r) vanishes when r is outside of the support of Wi(r).

The smoothing function is normalized to unity by
P

iviðrÞ ¼ 1 and has the spatial derivatives
rviðrÞ ¼
1

rðrÞ
X
j

vjðrÞrW iðrÞ � viðrÞrW jðrÞ
� �

; ð9Þ
where $Wi(r) = $W(r � ri). We also introduce the volume of a particle through the integral over the entire
domain
Vi ¼
Z

viðrÞ dr ¼
Z

1

rðrÞW ðr� riÞ dr �
1

ri
ð10Þ
which shows that ri = r(ri) is approximately the inverse of the particle volume, i.e., the specific volume. By the
normalization property of vi(r) the partitioning condition

P
iVi ¼ Vtotal is satisfied. For a smooth variable

w(r) we define the particle-averaged value and the particle-averaged spatial derivative by
wi ¼
1

Vi

Z
viðrÞwðrÞ dr and rwi ¼

1

Vi

Z
viðrÞrwðrÞ dr; ð11Þ
respectively. With integration by parts and Eq. (9) the particle-averaged spatial derivative is obtained by
rwi ¼ � 1

Vi

Z
rviðrÞwðrÞ dr ¼ � 1

Vi

X
j

Z
wðrÞ
rðrÞ2

W jðrÞrW iðrÞ � W iðrÞrW jðrÞ
� �

dr. ð12Þ
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The right-hand side represents an inter-particle integration between particle i and j. Similarly to Eq. (10), the
two integrals on the right-hand side of Eq. (12) are approximated separately to obtain
rwi �
X
j

wi

r2
i
þ
wj

r2
j

 !
ri
oW
orij

eij ð13Þ
in which oW
orij
eij ¼ rW ðri � rjÞ, and oW

orij
6 0, ri � rj = rij = rijeij, and eij is the normalized vector from particle i to

j. For the particle-averaged second order spatial derivative a nested application of Eq. (13) as suggested by
Flebbe et al. [10] can be used, which calculates second order derivatives from first order derivatives.

As shown in Fig. 1, the inter-particle interactions Wi$Wj and Wj$Wi vanish outside of the overlap of the
supports of Wi(r) and Wj(r). Since all points in this domain have less distances to both particles i and j it is
reasonable to substitute w(r) by an inter-particle-averaged value wij ¼ wðwðriÞ;wðrjÞÞ. Accordingly, the inte-
gration in Eq. (12) can be approximated as
rwi � � 1

Vi

X
j

wij

Z
1

rðrÞ2
½W jðrÞrW iðrÞ � W iðrÞrW jðrÞ� dr �

X
j

1

r2
i
þ 1

r2
j

 !
riwij

oW
orij

eij. ð14Þ
A simple inter-particle average is wij ¼ 1
2
½wðriÞ þ wðrjÞ�. For the particle-averaged second order spatial deriv-

ative, one can set w = $u, formulate the inter-particle average by ruij ¼
eij
rij
ðuðriÞ � uðrjÞÞ and calculate the

second-order derivative directly, which is computationally more efficient than a nested application of Eq.
(13). Furthermore, Eq. (14) is more flexible because of the possibility to formulate different inter-particle aver-
ages or to assume different inter-particle distributions. For instance, Inutsuka [19] solves a Riemann problem
to obtain the inter-particle average state, and as shown in Section 2.3.2, an assumed inter-particle shear stress
profile is used to handle the viscosity-difference at the phase interface. Note that, by considering the effects of
all particles inside the mentioned overlap domain higher-order approximations for the inter-particle integra-
tion may be derived. Therefore, Eqs. (13) and (14) may be extended to achieve higher spatial accuracy. Since
the focus on this paper is on modeling of complex fluids we consider here only the straightforward approxi-
mations as stated above.

2.2. Density evolution equation

The average density of a particle is qi ¼ mi=Vi in which mi is the mass of a particle. According to Eq. (10)
the evolution equation for the particle density used here is
qi ¼ mirðriÞ ¼ mi

X
j

W ij; ð15Þ
where Wij = W(rij) = W(ri � rj). This form conserves mass exactly and is similar to the common SPH density
approximation qi ¼

P
jmjW ij. The difference is that in the current approximation neighboring particles contrib-

ute to the particle density only by affecting the specific volume of particle i. Since there is no mass contribu-
tion from neighboring particles, Eq. (15) allows for density discontinuities when there are large particle-mass
i j
r

φ(r)

Wi

Wj

support of particle i

support of particle j

support of Wi Wj

Fig. 1. Schematic for the inter-particle integration.
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differences between nearby particles. Actually, if one defines the particle smoothing function as viðrÞ ¼
miW ðr� riÞ=

P
kmkW ðr� rkÞ as in [17] the form qi ¼

P
jmjW ij can be derived from Eq. (10).

2.3. Momentum equation

2.3.1. Pressure

When w is set as the pressure p, according to Eqs. (2) and (13) the particle acceleration caused by pressure is
obtained as
dvðpÞi

dt
¼ � 1

mi

X
j

pi
r2
i
þ

pj
r2
j

 !
oW
orij

eij. ð16Þ
Since this expression has anti-symmetric form with respect to exchanging i and j global conservation of
momentum is satisfied. Eq. (16) is similar to the form preferred by Monaghan [26]. Again, if the particle
smoothing function is given by viðrÞ ¼ miW ðr� riÞ=

P
kmjW ðr� rkÞ the same expression can be derived with

the inter-particle integral of Eq. (12).

2.3.2. Viscous force

For the flow in the bulk phase s, similar to Flekkøy et al. [11], the inter-particle-averaged shear stress is
approximated as
PðvÞ
ij ¼ gs

rij
ðeijvij þ vijeijÞ; ð17Þ
where vij = vi � vj. If particle i belongs to phase k and particle j belongs to phase l one can assume that the
phase interface is located at the center m between particle i and j and is normal to the inter-particle vector
rij. To ensure the continuity of shear stress and velocity across the interface one requires
gk

rim
ðeimvim þ vimeimÞ ¼

gl

rmj
ðemjvmj þ vmjemjÞ; ð18Þ
where rim ¼ rmj ¼ 1
2
rij, eim = emj = eij and vij = vim + vmj, as shown in Fig. 2. The inter-particle-averaged shear

stress at the k � l phase interface is accordingly
PðvÞ
ij ¼ 2gkgl

rijðgk þ glÞ ðeijvij þ vijeijÞ. ð19Þ
By comparison with Eq. (17), it can be seen that the term 2gkgl

gkþgl takes the role as a combined viscosity which
has a similar form in [3,4]. Hence, the particle acceleration due to shear force at the interface in conservative
form is given by
i

j

m

interface

v i

v j

v ij

v i

v im

v j

vm

vmj

Fig. 2. Schematic for the inter-particle shear stress.
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dvðvÞi

dt
¼ 1

mi

X
j

2gkgl

gk þ gl
1

r2
i
þ 1

r2
j

 !
1

rij

oW
orij

ðeij � vijeij þ vijÞ. ð20Þ
A comparison with the viscous-force formulation in [11] shows that the term ð 1
r2i
þ 1

r2j
ÞoW
orij
eij is equivalent to the

effective inter-particle interface area. For incompressible flows, Eq. (20) simplifies to
dvðvÞi

dt
¼ 1

mi

X
j

2gkgl

gk þ gl
1

r2
i
þ 1

r2
j

 !
vij

rij

oW
orij

ð21Þ
according Eq. (6). Note that the expression in Eqs. (20) and (21) do not strictly conserve angular momentum.
For single-phase flow an angular momentum conservative form can be derived with a nested application
of Eq. (14). However, it is not clear how Eq. (14) can be applied for multi-phase flow with large viscosity
difference. On the other hand, exact angular momentum conservation appears to be less important for the
multi-phase flow configurations we are interested in.

2.3.3. Surface force
The computation of the interface curvature usually is cumbersome. As a remedy, in the continuous surface

force model (CSF) [23], the surface force in Eq. (7) is rewritten as a tensor form F(1) = $ Æ P(1), where the
surface stress is
Pð1Þ ¼ aðI� n̂n̂ÞjrCj. ð22Þ

Here, $C is the gradient of a color index C which has a unit jump across the interface, and n̂ ¼ rC

jrCj. Because

I� n̂n̂ has a trace of d � 1 , d is the spatial dimension, there is a negative pressure contribution d�1
d ajrCj to the

surface stress according to Eq. (2). As this negative pressure has no contribution to surface tension, it is
reasonable to rewrite Eq. (22) as
Pð1Þ ¼ a
1

d
I� n̂n̂

� �
jrCj ð23Þ
to eliminate its effects. Another reason for this procedure is that Morris [30] suggested that a negative pressure
may cause stability problems in high resolution computations.

Since |$C| is represented numerically on an interface with finite width and approaches zero at its fringe a
direct computation of n̂ may be erroneous. As suggested by Wu et al. [44] this difficulty can be resolved by
rewriting Eq. (23) as
Pð1Þ ¼ a
1

jrCj
1

d
IjrCj2 �rCrC

� �
ð24Þ
which is well defined on the entire domain and vanishes naturally when |$C| becomes zero.
We define the color index as
Cs
i ¼

1 if particle i belongs to s;

0 else;

�
s ¼ 1; . . . ; S ð25Þ
and
P

sC
s ¼ 1. The color index of each particle does not change throughout the computation. Note that the

above definition is also valid for immiscible mixtures with thee or more phases. For particle i of phase k, a
non-vanishing color-index gradient exists if there are neighboring particles of phase l, l 6¼ k, i.e.,
rCkl
i ¼ ri

X
j

Cl
i

r2
i
þ
Cl

j

r2
j

" #
oW
orij

eij; l 6¼ k ð26Þ
in which Cl
i � 0. Accordingly the k � l phase interface stress is obtained as
Pð1Þ
kl ¼ akl

1

jrCklj
1

d
IjrCklj2 �rCklrCkl

� �
; l 6¼ k; ð27Þ
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where akl is surface-tension coefficient between the phases k and l. Hence, the total surface stress of particle
i is
Pð1Þ ¼
X
l

Pð1Þ
kl ; l 6¼ k. ð28Þ
Similarly to the formulation of the pressure term the particle acceleration due to surface tension is written
as
dvð1Þi

dt
¼ 1

mi

X
j

oW
orij

eij �
Pð1Þ

i

r2
i
þ
Pð1Þ

j

r2
j

 !
. ð29Þ
Note that Eq. (29) is in conservative form for both linear and angular momentum.

2.4. Mesoscopic hydrodynamics

2.4.1. Smoothed dissipative particle dynamics (SDPD)

In the current SPH method the irreversible part of the particle dynamics is
_mijirr ¼ 0;

_Pijirr ¼
X
j

2gkgl

gk þ gl
1

r2
i
þ 1

r2
j

 !
1

rij

oW
orij

ðeij � vijeij þ vijÞ.
ð30Þ
According to the GENERIC formalism [14,15,38], the mass and the momentum fluctuations of particle i

caused by thermal noise are postulated to be
d~mi ¼ 0;

d~Pi ¼
X
j

Bij dWij � eij; ð31Þ
where dWij is the traceless symmetric part of a matrix of independent increments of a Wiener process
dWij ¼ dWji , i.e. dWij ¼ ðdWij þ dWT

ijÞ=2� tr ½dWij�I=d, d is the spatial dimension. The isothermal deter-
ministic irreversible equations are obtained as
_mijirr ¼ 0;

_Pijirr ¼ �
X
j

B2
ij

4kBT
ðeij � vijeij þ vijÞ

ð32Þ
in which kB is the Boltzmann constant and T is the system temperature. Comparing Eq. (32) to (30) one
obtains
Bij ¼
�8kBT gkgl

gk þ gl
1

r2
i
þ 1

r2
j

 !
1

rij

oW
orij

" #1=2
. ð33Þ
2.4.2. Interface slip

If it is assumed that a fluid has a slightly different viscosity within a layer near the interface compared to the
bulk, see Fig. 3, apparent interface slip is permitted [13]. Unlike true slip an apparent slip allows for contin-
uous velocity and shear stress at the interface. For a k � l phase particle pair the shear stress is
gk

rim þ bkl
ðeimvim þ vimeimÞ ¼

gl

rmj þ blk
ðemjvmj þ vmjemjÞ; ð34Þ
where bkl is the slip length from k phase to l phase, and from l phase to k phase it is blk. The two slip lengths are
not necessarily the same. Accordingly, the inter-particle-averaged shear stress becomes
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Fig. 3. Schematic for the inter-particle shear slip.
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PðvÞ
ij ¼ 2gkglðeijvij þ vijeijÞ

gkðrij þ 2bklÞ þ glðrij þ 2blkÞ
ð35Þ
and the momentum fluctuation magnitude is
Bij ¼
�8kBTgkgl

gkðrij þ 2bklÞ þ glðrij þ 2blkÞ
1

r2
i
þ 1

r2
j

 !
oW
orij

" #1=2
. ð36Þ
2.5. Solid walls

The solid body region is filled with virtual particles [34]. Whenever the support of a fluid particle overlaps
with the wall surface a virtual particle is placed inside of the solid body, mirrored at the surface. The virtual
particles have the same volume (i.e., mass and density), pressure and viscosity as their fluid counterparts but
the velocity is given as vvirtual = 2vwall � vreal for a no-slip velocity boundary condition or vsvirtual ¼ vsreal, where s
is the tangential direction, for a free slip boundary condition. For considering wall–fluid interactions, virtual
particles are set to an independent phase w and are treated the same way as fluid particles. The corresponding
fluid–wall surface energy afw and slip lengths bwf = bfw, if apparent slip is permitted, are also specified inde-
pendently as input parameters. Currently, only straight channel walls are considered. For curved wall surfaces,
the virtual particle approach may introduce considerable errors. To increase the accuracy near curved sur-
faces, Takada et al. [41] and Morris et al. [29] have introduced special wall particles which interact with the
fluid particles in such a way that imposed boundary conditions are satisfied. How to incorporate these
approaches into the current SPH formulation is one of the objectives of further investigations.

3. Numerical examples

The following two-dimensional numerical examples are provided to validate the proposed multi-phase SPH
method. For all cases a quintic spline kernel [29] and a second order predictor–corrector time integration are
used. A constant smoothing length, which is kept equal to the initial distance between the nearest particles, is
used for all the test cases. The macroscopic results are shown in non-dimensional form, while SI units are used
for mesoscopic examples to reflect the physical scales of the problems. To maintain numerical stability a
Courant–Friedrichs–Lewy time step restriction based upon artificial sound speed (isothermal compressiblity),
body force, viscous and surface tension is employed [26,30]. When thermal fluctuations are introduced in the
mesoscopic simulation the time steps are further decreased to recover the correct kinetic temperature. Note
that as there may be two or more phase interfaces with large density differences the time-step estimate based
on the capillary-wave phase velocity, as suggested by Brackbill et al. [1], is modified to
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Dt 6 0:25min
minðqk; qlÞh3

2pakl

� �1=2

; k 6¼ l. ð37Þ
Accordingly, the artificial sound speed should be comparable with
a2 � max
akljkl

c

minðqk; qlÞD

� �
; k 6¼ l; ð38Þ
where jkl
c is the typical curvature of the k � l phase interface and D is the desired relative density variation.

3.1. Capillary wave

We consider two problems of circular liquid-droplet oscillation under the action of capillary forces. The
first problem is a droplet oscillating in a liquid phase with the same density, i.e., qd = ql. The second problem
is a droplet oscillating in a gas phase with large density ratio, i.e., qd/qg � 1. Numerical computations for sim-
ilar problems but with different SPH implementations can be found in [30,31].

For the first problem, the computation is performed in a domain �1/2 < x < 1/2 and �1/2 < y < 1/2 using
fluids of the same density qd = ql = 1 and equal viscosity g = 0.05. No-slip boundary conditions are applied at
all the domain boundaries. A droplet of radius R = 0.1875 is placed at the domain center and the symmetry
axes are x = 0 and y = 0. The surface-tension coefficient is a = 1 and the artificial sound speed is about 10.
To all particles a divergence-free initial velocity vx ¼ V 0

x
r0
ð1� y2

r0r
Þ expð� r

r0
Þ and vy ¼ V 0

y
r0
ð1� x2

r0r
Þ expð� r

r0
Þ is

assigned, where V0 = 10, r0 = 0.05, and r is the distance from the position (x,y) to the droplet center. In order
to study the convergence properties the calculation is carried out with 900, 3600, 14,400 particles, respectively.

Fig. 4 shows the positions of the droplet particles at t = 0, t = 0.08, t = 0.16 and t = 0.26 for a total particle
number of 14,400. Comparing to the results of Morris [30] (their Fig. 6) at about the same resolution the
agreement is good while our results produce a more regular particle distribution which suggests a smoother
surface tension at the interface and smaller density fluctuations inside the droplet. Note that the hexagonal
lattice used by Morris matches better the initial droplet geometry than our rectangle lattice. The latter,
however, is easier to implement and quite suitable for symmetric shapes. Results with different resolutions
are compared up to time t = 0.5 with 100 time samples, and the relative error between different resolutions

is calculated by EN ;4N ¼
P0:5

t¼0jfN � f4N j, where fN and f4N are selected global quantities. Fig. 5 compares the

variation of the center-of-mass position and velocity of the upper left 1/4 part of the droplet. Convergence
orders of 0.9 and 0.83, respectively, are obtained. Note there is no mass-loss error in the computations
demonstrating that the current method conserves mass.

For the second problem, the initially prescribed-divergence free velocity is decreased for small amplitude
oscillations. The droplet has a radius of R = 0.2, a density of qd = 1, and a viscosity of gd = 5 · 10�2. The
gas phase has a density of qg = 10�3 and a viscosity of gg = 5 · 10�4, which gives a density ratio of 1000
and a viscosity ratio of 100. The artificial sound speed is 20 or larger in order to decrease the effects of pressure
waves caused by artificial compressibility. The calculation is carried out with 3600 particles in total the droplet
is filled with 404 particles which is about 1/8 of that in [31]. For a free droplet oscillation, the theoretical rela-

tion between the period s and the surface tension is s ¼ 2p
ffiffiffiffiffiffiffi
R3ql
6a

q
. Fig. 6(a) shows the center-of-mass position of

the upper left 1/4 part of the droplet for a = 1. The measured period is 0.231 which is in good agreement with
the theoretical value of 0.229. Note the mass center position is slightly distorted by the high frequency but low
amplitude oscillations caused by artificial sound waves. The calculated relation between a and s is plotted in
Fig. 6(b) which shows that the largest deviation from the theoretical values is less than 5%.

3.2. Three-phase interaction

We consider two stationary problems with three phases. In the first problem all three phases are free to
move. In the second problem a solid wall with different wetting properties is considered as a separated phase.
According to the Young–Laplace theory, at equilibrium, the three phases and interfaces meet at the triple-
phase point and the angles between the interfaces satisfy
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a12 ¼ a13 cos h1213 þ a23 cos h1223;

a13 ¼ a12 cos h1213 þ a23 cos h1323;

a23 ¼ a12 cos h1223 þ a13 cos h1323;

ð39Þ
where h1213 stands for the angle between the 1–2 phase interface and the 1–3 phase interface, and so forth for
h1223 and h1323. If one of the three phases is replaced by a solid wall the respective equation in (39) simplifies to
a1w ¼ a12 cos hþ a2w; ð40Þ

where h is the contact angle. We compare our numerical results with these analytical solution.

For the first problem the computation is performed on the domain 0 < x < 1 and 0 < y < 0.5 where fluid 1
occupies the top-left region, fluid 2 occupies the top-right region, and fluid 3 occupies the region defined by
y < x + 0.25 and y < �x + 0.75, as shown in Fig. 7(a). Free-slip boundary conditions are applied at the
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Fig. 5. Droplet oscillation with qd/ql = 1: convergence test.
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boundaries. The calculation is carried out with 1800 particles. Fig. 7(b) shows the positions of particles when
a12 = a13 = a23 = 1. Note the angles between all the three interfaces recover 120�, which is the analytical solu-
tion of Eq. (39). The calculations also show that, when a23 increases, the angle h1213 decreases accordingly.
Fig. 7(c) indicates the positions of particles when a23 is increased to 1.717. Again, the measured interface
angles are in good agreement with the analytical solution which gives h1213 = 90� and h1223 = h1323 = 135�.
The consistency of the model using three different color indices for two phases is also examined. Fig. 7(d)
shows the positions of particles when there is no surface tension between fluid 1 and fluid 2. The interface
configuration gives h1213 = 180� and h1223 = h1323 = 90� which is equivalent to that of a circular interface
between two phases.

For the second problem, the computation is performed on the domain �1 < x < 1 and 0 < y < 1. Fluid 2 is
set to occupy the region of �0.5 < x < 0.5 and 0 < y < 0.3, and fluid 1 is set to occupy all the rest of the
computational domain while the lower boundary is a solid wall. Free-slip boundary conditions are applied
the domain boundaries and the symmetry axis is x = 0. The calculation is carried out with 1800 particles.
For a12 = a1w = 1 and a2w = 1.5 the measured contact angle h is close to 120� (see Fig. 8(a)), and for
a12 = a1w = 1 and a2w = 0.5 the measured contact angle decreases to 60� (see Fig. 8(b)). Note that both results
are in good agreement with the analytic solutions of Eq. (40).
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3.3. Drop deformation in shear flow

We consider a circular drop with initial radius R0 in a Couette flow with top and bottom wall velocity of
±v, respectively. The periodic computational domain is the region 0 < x < 8R0 and 0 < y < 8R0 in which the
drop is centered at (4R0,4R0). The calculation is carried out with 9216 particles. The drop deforms with the
flow until a balance between viscous stresses and surface tensions is reached. When the drop and the shearing
fluid have the same viscosity the ratio of these two forces can be expressed by the capillary number
Ca = 0.25gv/a. The Reynolds number is given by Re = 0.25qR0v/g. The steady-state deformation of the drop
2 0-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0ct angle: particle positions of fluid 1 (open circles), fluid 2 (black dots) and solid wall (gray dots) when contact angles are (a)
�.X.Y. Hu, N.A. Adams / Journal of Computational Physics 213 (2006) 844–861855
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is measured by a deformation parameter D = (L � B)/(L + B) where L and B are the drop�s half-length and
half-width, respectively.

Fig. 9(a) shows the final equilibrium stage when Ca = 0.15 and Re = 0.5. The deformed drop is ellipsoidal
with its major axis approximately at 45� to the x direction. The measured D is about 0.145 which is close to the
result obtained by Zhou and Pozrikidis [45] with a boundary element method. Fig. 9(b) illustrates the com-
parisons of their results and the current calculated deformation for several capillary numbers. The agreement
is good and the maximum difference is within 6%. Note that the deformation is slightly less than that of Zhou
and Pozrikidis, caused by the effect of a smaller domain size in x direction. The drop deformation in the case of
different viscosities is also examined. Shown in Fig. 10 are the results for Ca = 0.15 and Re = 0.5 with
gd/gc = 2 and 0.5, where gd is the viscosity of the drop and gc the shearing fluid. The observed deformation
decreases or increases accordingly. These results are in accordance with the predictions for three-dimensional
drops of Taylor [42].

3.4. Mesoscopic flow in a channel

We consider three mesoscopic flow problems which may suggest different mechanisms for mesoscopic wall
slippage. The first problem examines the possibility of effective slip caused by nano-bubbles attached to the
wall surface. The second problem evaluates the slip length when apparent slip is permitted. The third problem
is the moving contact line problem. In all cases, no-slip boundaries are used for the wall surface. Since there is
no particle placed right at the wall surface the possible singularity is circumvented.

For the first problem the computational domain is 0 < x < 1 lm and 0 < y < 1 lm. The calculation is
carried out with 900 particles. Most of the particles are water particles with density of 1000 kg/m3 and visco-
sity of 10�6 kg/ms while 1/3 of particles attaching to the low boundary are single particle gas bubbles with
density of 25 kg/m3 and viscosity of 2.5 · 10�7 kg/ms (see Fig. 11(a)). Each bubble has a radius of about
20 nm. The top wall is assigned with the velocity of 2v = 10�6 m/s. A periodic boundary condition is used
in the flow direction. Neither surface tension nor thermal fluctuation is considered in the computation. The
problem is computed up to t = 600 ms, no steady solution is obtained, and the velocity profile oscillates
periodically while the nano-bubbles stay attached to the wall surface. The time-averaged velocity profile is
plotted in Fig. 11(b) which shows that there is finite effective slip at the lower boundary. This result is in
qualitative agreement with analytic work of Lauga and Stone [24] on pressure driven flow. When calculated
Ca

D

0.00 0.10 0.20 0.30 0.40
0.00

0.10

0.20

0.30

0.40

Zhouand Pozrikidis (1993)
this paper

Fig. 9. Drop deformation in a shear flow: (a) particle positions of the drop (black dots) and the shearing fluid (open circles) when
Ca= 0.15,Re= 0.5 andg /g = 1, (b) relation between the deformation parameter and capillary number.856X.Y. Hu, N.A. Adams / Journal of Computational Physics 213 (2006) 844–861
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by be = H(vave � v)/v where H is the channel height, the average effective slip length is about 27 nm which has
the same magnitude as is observed in several experiments [7,32].

For the second problem the same computational domain is used while the lower half is filled with fluid 1
which has the density of 1000 kg/m3 and viscosity of 10�6 kg/ms, and the upper half with fluid 2 which has the
same density but slightly smaller viscosity of 8 · 10�7 kg/ms. Apparent slip between the two fluids is permitted
and given as b12 = 50 nm and b21 = 0. The lower wall is considered as a separate phase with an apparent slip of
50 nm at the fluid–wall surface, i.e., bfw = bfw = 50 nm. The fluid–fluid surface-tension coefficient is 10�9 Pa m
and no surface energy is considered at the fluid–wall surface. The isothermal compressibility is given as
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a = 10�3 m/s and the thermal fluctuation is introduced with a temperature of T = 300 K. Periodic boundary
conditions are used in the x direction. The calculation is carried out with 900 particles and time steps of about
dt = 10�7 s. To verify the thermal fluctuation the computation is first carried out without imposed shear. The
calculated results show that the system reaches the correct kinetic temperature within several ms (see
Fig. 12(a)). Fig. 12(b) shows the measured equilibrium momentum distribution which fits a Gaussian distri-
bution. The equilibrium results are employed as the initial condition for further computations. The upper
and lower walls are assigned with the velocity of v = ±10�6 m/s, respectively. The time-averaged velocity
profile along the y direction in steady state is plotted in Fig. 13(a). Note that there is considerable slip at
the fluid–fluid interface and the lower fluid–wall surface. The measured slip length between the two fluids is
about 24 nm and about 1/2 of b12, which suggests an average effect of b12 and b21. The measured slip velocity
at the lower wall is about 4.8 · 10�6 m/s which corresponds to a slip length of 48 nm. Fig. 13(b) compares the
measured and input values for several slip lengths on the wall up to 75 nm and good agreement is found.

For the third problem, we consider a mesoscopic two-phase Couette flow in a 0.5 lm · 2 lm channel. The
two fluids have the same density and viscosity of 1000 kg/m3 and 10�6 kg/ms, respectively. The fluid–fluid
surface-tension coefficient and the two fluid–wall interface surface energy are all set as 10�9 Pa m and the static
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contact angle of the fluid–fluid interface at the solid wall is 90�. The upper and lower walls are assigned with
velocities of ±10�4 m/s, respectively . The isothermal compressibility is given as a = 10�3 m/s and the thermal
fluctuation is introduced with a temperature of T = 300 K. Periodic boundary conditions are used in the x

direction. The calculation is carried out with 1800 particles with time steps of about dt = 10�7 s. Fig. 14 shows
the instantaneous particle positions for the steady state and the time-averaged velocity field and interface
position. Note that for regions far from the contact line the velocity profile along the y direction is typical
for Couette flow while large deviations exist in the regions near the contact line (see Fig. 14). These results
are in qualitative agreement with MD simulations of Thompson and Robbins [43] and Qian et al. [33]. Note
that the current results are obtained with no-slip boundary conditions which suggest that the slip near the
contact line actually is an apparent slip and there is no real slip right at the wall surface.

4. Concluding remarks

We have developed a multi-phase SPH method from a particle smoothing function in which the neighbor-
ing particles only contribute to the specific volume but not density. While handling density discontinuity nat-
urally and conservatively the new method is also capable of multi-viscosity, multi-surface tension, fluid–wall
interactions, mesoscopic thermal fluctuations, and interface slippage. Numerical examples are investigated and
compared with analytic solutions, previous results and experiments. The results suggest that the method can
be faithfully applied to both macroscopic and mesoscopic multi-phase flows. Since its construction is based on
the standard SPH method the involved approximations are simple to implement and suitable for straightfor-
ward extension to three dimensions. In addition, since the color index of each particle does not change
throughout the computation and, therefore, no color-index evolution equation is needed, the computational
cost only increases slightly when the number of phases is increased. Finally, as the currently used inter-particle
integration approximation for determining the particle-averaged spatial derivatives can be extended to more
E-075E-07baFig. 14. The moving contact line in a Couette ”ow: (a) instantaneous particle positions of ”uid 1(black dots) ”uid 2 (open circles) and solidwalls (gray dots) for the steady state, (b) time-averaged velocity “eld and interface position.X.Y. Hu, N.A. Adams / Journal of Computational Physics 213 (2006) 844…861859
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accurate formulations our method suggests a way for implementing SPH methods with higher order of
accuracy.
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