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Abstract

A multi-phase smoothed particle hydrodynamics (SPH) method for both macroscopic and mesoscopic flows is
proposed. Since the particle-averaged spatial derivative approximations are derived from a particle smoothing function
in which the neighboring particles only contribute to the specific volume, while maintaining mass conservation, the new
method handles density discontinuities across phase interfaces naturally. Accordingly, several aspects of multi-phase inter-
actions are addressed. First, the newly formulated viscous terms allow for a discontinuous viscosity and ensure continuity
of velocity and shear stress across the phase interface. Based on this formulation thermal fluctuations are introduced in a
straightforward way. Second, a new simple algorithm capable for three or more immiscible phases is developed. Mesocopic
interface slippage is included based on the apparent slip assumption which ensures continuity at the phase interface. To
show the validity of the present method numerical examples on capillary waves, three-phase interactions, drop deforma-
tion in a shear flow, and mesoscopic channel flows are considered.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For decreasing length scales and increasing time scales, multi-phase forces, such as those caused by viscosity
difference or surface tension, may become comparable to inertial forces even though the overall flow can be
considered as macroscopic. When length scales decrease further to the order of pm or smaller the flow may
become mesoscopic. In a mesoscopic flow multi-phase forces usually dominate inertial forces, and thermal
fluctuations affect the flow behavior strongly. Many industrial, environmental, and biological applications
involve macroscopic and mesoscopic flow problems with the presence of multiple fluid phases. A variety of
methods has been developed to study the above problems numerically. In general, there are two main
approaches which can be distinguished by the way of handling phase interfaces: one is the Eulerian approach,
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such as the volume of fluid (VOF) method [36], the level set method [39] and the lattice Boltzmann method
(LBM) [2]; the other is the Lagrangian approach, such as vortex methods [6,22], molecular dynamics (MD)
[21], and dissipative particle dynamics (DPD) [18].

The smoothed particle hydrodynamics (SPH) method is a fully Lagrangian, grid free method in which a
smoothing kernel is introduced to approximate functions and their spatial derivatives originating from the
interactions carried by neighboring particles. The SPH algorithm itself is similar to that of MD but uses addi-
tional thermodynamic variables which are obtained by a coarse graining procedure from the underlying
microscopic (molecular) physics. Since its introduction by Lucy [25] and Gingold and Monaghan [12], SPH
has been applied to a wide range of macroscopic flow problems [26]. Recently, the method has been extended
to smoothed dissipative particle dynamics (SDPD) for mesoscopic problems [9]. Unlike DPD [8,16], SDPD
allows to choose an equation of state and to specify transport coefficients directly. Thermal fluctuations
can also be included in a physically consistent way, by which the fluctuation magnitude increases naturally
while the physical scale of the problem decreases to the mesoscopic scale.

Despite its fully Lagrangian property, when the standard formulation of SPH is applied to multi-phase flows
only small density differences are permitted between the considered phases because it is implicitly assumed that
the density gradient is much smaller than that of the smoothing kernel [27,28]. As a remedy, Richie and Thomas
[35] suggest a summation of the particle-averaged pressure, not density, to handle large density gradients. How-
ever, their method does not satisfy mass conservation. Colagrossi and Landrini [5] modify the approximation
form of spatial derivatives to diminish the effects of large density difference across the interface. However, since
the density summation is replaced by a non-conservative density evolution equation mass conservation is not
satisfied either. Although the conservation errors are decreased somewhat by a special density re-initialization
approach, they may accumulate and affect the flow behavior considerably in long time computations.

In this paper, the basic approximations for particle-averaged spatial derivatives are derived from a par-
ticle smoothing function in which neighboring particles only contribute to the specific volume but not to the
density. The resulting algorithm resolves a density discontinuity at a phase interface naturally and satisfies
mass conservation since a density summation equation is employed. With the new algorithm several aspects
of multi-phase interactions are addressed. First, newly formulated viscous terms allow for a viscosity discon-
tinuity and ensure continuity of velocity and shear stress across the phase interface. Based on this formu-
lation mesoscopic thermal fluctuations are introduced in a straightforward way. Second, a new algorithm
capable of handling three or more immiscible phases is developed. It is simple and conservative, and circum-
vents the difficulties of calculating the normalized interface direction and curvature near the fringe of the
interface. Furthermore, mesoscopic interface slippage is modeled based on the apparent-slip assumption
which ensures continuity at the phase interface. In this paper, the isothermal form of the Navier—Stokes
equations is considered. The extension of the method to include a transport equation for energy is
straightforward.

2. Method

We consider the isothermal Navier—Stokes equations on a moving Lagrangian grid

dp

. 1

a VY (1)

dv 1 F

—=g——Vp+F+—, 2

AL (2)
where p, v and g are material density, velocity and body force, respectively. A simple equation of state is
p = —xrV in which xt is the isothermal compressibility. It can be rewritten as

p=ap. (3)

When Eqgs. (1) and (2) are used for modeling of low Reynolds number incompressible flows with the artificial-
compressibility method « is equal to the artificial speed of sound. An alternative equation of state for incom-
pressible flows is
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P =D (p%) L b, (4)

where pg, po, ¥ and « are parameters. The parameters in Eqgs. (3) and (4) may be chosen based on a scale anal-
ysis [26,29,30] so that the density variation is less than a given value. F denotes the viscous force

F—lv.no, (5)
0

where the shear stress is I1'") = (Vv + Vv") if the bulk viscosity is assumed as { = (2/d)n, and d is the spatial
dimension. For incompressible flow the viscous force simplifies to

F = vwW, (6)

where v = 5/p is the kinematic viscosity. F'") denotes the surface force which acts at the interface only. For an
immiscible mixture the surface force is given as

F = o(V - 1)n, (7)

where « is surface-tension coefficient, x = V - n and i are curvature and normalized interface direction, respec-
tively. Note that body force, pressure, and surface force are conservative forces. Since diffusion effects are
neglected in the current model dissipative effects are due to viscous forces only.

2.1. Smoothed particle in a multi-phase mixture

For an S-phase mixture we introduce the smoothing function for particle i
W —rxi,h) _ Wir)
Xi(r) = Wir — = ’ (8>
W —r)  a(r)

where r; gives the position of particle i, k= 1,...,N, N is the total particle number and / is the smoothing
length. W(r) is a generic shape function known as the SPH smoothing kernel which is radially symmetric
and has the properties [W(r — r’,h) dr' = 1 and lim,, _, o W(r — r’,h) = (r — t'). o(r) is a measure of the particle
number density which has a larger value in a dense particle region than in a dilute particle region [20]. y,(r) has
the same form as the moving-least-square (MLS) approximation that reproduces the constant function, which
is called Shepherd function [40]. In Flekkoy et al. [11] and Serrano and Espanol [37] yAr) is employed for
Voronoi-type DPD formulations. Note that y{r) vanishes when r is outside of the support of W(yr).
The smoothing function is normalized to unity by ), x,(r) = 1 and has the spatial derivatives

V) = —— S [V — 1V m)], 9)
a(r) &

where VW {(r) = VI¥(r — r;). We also introduce the volume of a particle through the integral over the entire
domain

"V;:/X,-(l') dr:/LW(r—r,v)drzl (10)

a(r) 0,

which shows that g; = o(r;) is approximately the inverse of the particle volume, i.e., the specific volume. By the
normalization property of y{r) the partitioning condition ) ,7"; = ¥ o is satisfied. For a smooth variable
Y(r) we define the particle-averaged value and the particle-averaged spatial derivative by

b= [ a and 9y, =2 [ 20900 dr (1)
respectively. With integration by parts and Eq. (9) the particle-averaged spatial derivative is obtained by

vy, = —% /V;@(r)d/(r) dr = —Vii > / VI 1y 0V (x) — W)V ()] . (12)

o(r)?
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The right-hand side represents an inter-particle integration between particle i and j. Similarly to Eq. (10), the
two integrals on the right-hand side of Eq. (12) are approximated separately to obtain

P ANl 4
vl//i% —l+—j 0, —¢€;; (13)
zj: <o,2 0’]2- ory
in which g%e,«j =VW(r; —r;), and 2,—W <0, r; —r;=r;=r ey, and e; is the normalized vector from particle i to

j. For the particle-averaged second order spatial derivative a nested application of Eq. (13) as suggested by
Flebbe et al. [10] can be used, which calculates second order derivatives from first order derivatives.

As shown in Fig. 1, the inter-particle interactions W;VW; and W;VW; vanish outside of the overlap of the
supports of Wy(r) and Wj(r). Since all points in this domain have less distances to both particles i and j it is
reasonable to substitute /(r) by an inter-particle-averaged value J,-j = (Y (), ¥(r;)). Accordingly, the inte-
gration in Eq. (12) can be approximated as

1 - 1 11\ — ow
Vi~ - zj:lpij/a(r)z[wj(r)vwl(r) — Wi(r)VIW,(r)] dr ~ ) <O_2+2_> oy o, O (14)

J i 9

A simple inter-particle average is %j = %[tp(r,-) + (r;)]. For the particle-averaged second order spatial deriv-
ative, one can set iy = Vo, formulate the inter-particle average by Vo,; = %(q)(r,«) — ¢(r;)) and calculate the
second-order derivative directly, which is computationally more efficient than a nested application of Eq.
(13). Furthermore, Eq. (14) is more flexible because of the possibility to formulate different inter-particle aver-
ages or to assume different inter-particle distributions. For instance, Inutsuka [19] solves a Riemann problem
to obtain the inter-particle average state, and as shown in Section 2.3.2, an assumed inter-particle shear stress
profile is used to handle the viscosity-difference at the phase interface. Note that, by considering the effects of
all particles inside the mentioned overlap domain higher-order approximations for the inter-particle integra-
tion may be derived. Therefore, Egs. (13) and (14) may be extended to achieve higher spatial accuracy. Since
the focus on this paper is on modeling of complex fluids we consider here only the straightforward approxi-

mations as stated above.

2.2. Density evolution equation

The average density of a particle is p; = m;/¥"; in which m; is the mass of a particle. According to Eq. (10)
the evolution equation for the particle density used here is

p; = miO'(l',*) =m; Z W,‘/, (15)
J

where Wj; = W(r;) = W(r; — r;). This form conserves mass exactly and is similar to the common SPH density
approximation p; = Y ;m;W ;. The difference is that in the current approximation neighboring particles contrib-
ute to the particle density only by affecting the specific volume of particle i. Since there is no mass contribu-
tion from neighboring particles, Eq. (15) allows for density discontinuities when there are large particle-mass

support of particle ; support of WVW;

—

support of particle j

Fig. 1. Schematic for the inter-particle integration.
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differences between nearby particles. Actually, if one defines the particle smoothing function as y,(r) =
miW(x —1;)/> W (r —xi) as in [17] the form p; = > m;W;; can be derived from Eq. (10).

2.3. Momentum equation
2.3.1. Pressure

When / is set as the pressure p, according to Egs. (2) and (13) the particle acceleration caused by pressure is
obtained as

dv? 1 p D\ oW
v S (G e o
iy i Jj

ij

Since this expression has anti-symmetric form with respect to exchanging i and j global conservation of
momentum is satisfied. Eq. (16) is similar to the form preferred by Monaghan [26]. Again, if the particle
smoothing function is given by y;(r) = m;W(r —r;)/>_,m;W(r —r;) the same expression can be derived with
the inter-particle integral of Eq. (12).

2.3.2. Viscous force
For the flow in the bulk phase s, similar to Flekkoy et al. [11], the inter-particle-averaged shear stress is
approximated as
w_"

11 = F_U (e,vi +vije;), (17)
where v; =v; — v;. If particle i belongs to phase k and particle j belongs to phase / one can assume that the
phase interface is located at the center m between particle i and j and is normal to the inter-particle vector
r;. To ensure the continuity of shear stress and velocity across the interface one requires

n* n'

— (eimvim + Vimeim) = (emjvmj + ijemj)7 (18)

Vim rmj
where ry, = r,; = %r,-j, €, = €,,; = €; and v; = v;,, + v,,;, as shown in Fig. 2. The inter-particle-averaged shear
stress at the k — [/ phase interface is accordingly

kol
i = (@i + Viey). (19)
7 I"U(l’[k + 1/’[) 7R 7ty

By comparison with Eq. (17), it can be seen that the term % takes the role as a combined viscosity which

has a similar form in [3,4]. Hence, the particle acceleration due to shear force at the interface in conservative
form is given by

Fig. 2. Schematic for the inter-particle shear stress.
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vl 1 2 (1 1w
R Yy Vi + Vi 20
dt m; - w4+ '\ o? Tt 0'2 rij ar,, (e - Vi@ + V). (20)

A comparison with the viscous-force formulation in [11] shows that the term (ﬁ + ﬁ)g—We,-,- is equivalent to the
o ; rij L

effective inter-particle interface area. For incompressible flows, Eq. (20) simplifies to

1\ v, oW
= 21
mz Z k + 11 ( 62> rij al’u ( )

according Eq. (6). Note that the expression in Egs. (20) and (21) do not strictly conserve angular momentum.
For single-phase flow an angular momentum conservative form can be derived with a nested application
of Eq. (14). However, it is not clear how Eq. (14) can be applied for multi-phase flow with large viscosity
difference. On the other hand, exact angular momentum conservation appears to be less important for the
multi-phase flow configurations we are interested in.

2.3.3. Surface force

The computation of the interface curvature usually is cumbersome. As a remedy, in the continuous surface
force model (CSF) [23], the surface force in Eq. (7) is rewritten as a tensor form F""' =V - 1V where the
surface stress is

Y = (I —fR)|VC|. (22)

Here, VC is the gradient of a color index C which has a unit jump across the interface, and n = Because

W
I — nn has a trace of d — 1, d is the spatial dimension, there is a negative pressure contribution Trx|VC | to the
surface stress according to Eq. (2). As this negative pressure has no contribution to surface tension, it is
reasonable to rewrite Eq. (22) as

nv = ocClI - ﬁﬁ) |V (23)

to eliminate its effects. Another reason for this procedure is that Morris [30] suggested that a negative pressure
may cause stability problems in high resolution computations.

Since |V (] is represented numerically on an interface with finite width and approaches zero at its fringe a
direct computation of i may be erroneous. As suggested by Wu et al. [44] this difficulty can be resolved by
rewriting Eq. (23) as

1
e

which is well defined on the entire domain and vanishes naturally when |VC| becomes zero.
We define the color index as

nv = ( 1vel —VCVC) (24)

=

1

{ 1 if particle i belongs to s, s=1.....8 (25)

0 else,

and > C° = 1. The color index of each particle does not change throughout the computation. Note that the
above definition is also valid for immiscible mixtures with thee or more phases. For particle i of phase &, a
non-vanishing color-index gradient exists if there are neighboring particles of phase /, / # k, i.e.,

c! ow
VCZ{] :U[Z ! ]
J

=t o —e; I#k (26)
in which C! = 0. Accordingly the k — I phase interface stress is obtained as

i 0

1 /1
) = o Tz <31|vc“2 - vc’f’vc"/>, 1 #k, (27)
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where o is surface-tension coefficient between the phases k and /. Hence, the total surface stress of particle
iis

oo =N"1m), 1+k (28)
7
Similarly to the formulation of the pressure term the particle acceleration due to surface tension is written
as
o 1 —ow (o Y
LA — 7eij' 7124_% . (29)
dr m; < Or; o lor
J - ! J
Note that Eq. (29) is in conservative form for both linear and angular momentum.
2.4. Mesoscopic hydrodynamics
2.4.1. Smoothed dissipative particle dynamics (SDPD)
In the current SPH method the irreversible part of the particle dynamics is
n;li‘irr = 07
: fp' (1 1\ 1 oW (30)
P,| = Bt S R e - Vi + V).
|1rr zj:ﬂ"-i-ﬂl 0[_2+012_ r arij(ej Vjej+vj)

According to the GENERIC formalism [14,15,38], the mass and the momentum fluctuations of particle i
caused by thermal noise are postulated to be

dﬁ’l[ == 0,
df’i == ZBU dWU . e[j, (31)
J

where dW,-j is the traceless symmetric part of a matrix of independent increments of a Wiener process
dwyy =dw ;i ie dW ;= (AW + dW;)/Z —tr[d#;]1/d, d is the spatial dimension. The isothermal deter-
ministic irreversible equations are obtained as

mi‘irr = 07

. B (32)
Pl = — zj: m (e - vijei; + Vi)

in which kg is the Boltzmann constant and 7 is the system temperature. Comparing Eq. (32) to (30) one

obtains
kT (1 1\ 1 aw]"”
—orBIn N St = - (33)
ﬂk+nl o5 O—j rij ar,-j

1

B, =

Y

2.4.2. Interface slip

If it is assumed that a fluid has a slightly different viscosity within a layer near the interface compared to the
bulk, see Fig. 3, apparent interface slip is permitted [13]. Unlike true slip an apparent slip allows for contin-
uous velocity and shear stress at the interface. For a k — / phase particle pair the shear stress is

k !

n
(eimvim + Vimeim) =

ro + b[k (emjvmj + vmjemj)7 (34)
mj

kl
Vim + b

where 5" is the slip length from k phase to / phase, and from / phase to k phase it is 5’. The two slip lengths are
not necessarily the same. Accordingly, the inter-particle-averaged shear stress becomes
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near
interface

[ layers

interface

Fig. 3. Schematic for the inter-particle shear slip.

W — 2nknl(eijvij + Vl‘jeij)
ij ”k(rij + 2bk]) + 711(7”17‘ + 2b1k)

and the momentum fluctuation magnitude is

1/2

—8kgTHn' 1 1\ow

B = X Kl . 771’7 |\ =2t =330 : (36)
e (ry +26%) + ' (ry; +267) \ o7~ a5 ) Ory

2.5. Solid walls

The solid body region is filled with virtual particles [34]. Whenever the support of a fluid particle overlaps
with the wall surface a virtual particle is placed inside of the solid body, mirrored at the surface. The virtual
particles have the same volume (i.e., mass and density), pressure and viscosity as their fluid counterparts but
the velocity is given as Vyirryal = 2Vwan — Vreal fOr @ no-slip velocity boundary condition or vi,, ., = Vi.,, where t
is the tangential direction, for a free slip boundary condition. For considering wall-fluid interactions, virtual
particles are set to an independent phase w and are treated the same way as fluid particles. The corresponding
fluid-wall surface energy o™ and slip lengths 5™ = »™, if apparent slip is permitted, are also specified inde-
pendently as input parameters. Currently, only straight channel walls are considered. For curved wall surfaces,
the virtual particle approach may introduce considerable errors. To increase the accuracy near curved sur-
faces, Takada et al. [41] and Morris et al. [29] have introduced special wall particles which interact with the
fluid particles in such a way that imposed boundary conditions are satisfied. How to incorporate these
approaches into the current SPH formulation is one of the objectives of further investigations.

3. Numerical examples

The following two-dimensional numerical examples are provided to validate the proposed multi-phase SPH
method. For all cases a quintic spline kernel [29] and a second order predictor—corrector time integration are
used. A constant smoothing length, which is kept equal to the initial distance between the nearest particles, is
used for all the test cases. The macroscopic results are shown in non-dimensional form, while ST units are used
for mesoscopic examples to reflect the physical scales of the problems. To maintain numerical stability a
Courant-Friedrichs—Lewy time step restriction based upon artificial sound speed (isothermal compressiblity),
body force, viscous and surface tension is employed [26,30]. When thermal fluctuations are introduced in the
mesoscopic simulation the time steps are further decreased to recover the correct kinetic temperature. Note
that as there may be two or more phase interfaces with large density differences the time-step estimate based
on the capillary-wave phase velocity, as suggested by Brackbill et al. [1], is modified to
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min(p,, )"\
At < 0.25min (W) . k£ L (37)
Accordingly, the artificial sound speed should be comparable with
a® ~ max (%), k#1, (38)
min(py, p,)4

where «*' is the typical curvature of the k — / phase interface and A is the desired relative density variation.
3.1. Capillary wave

We consider two problems of circular liquid-droplet oscillation under the action of capillary forces. The
first problem is a droplet oscillating in a liquid phase with the same density, i.e., pqg = p;. The second problem
is a droplet oscillating in a gas phase with large density ratio, i.e., pg/p > 1. Numerical computations for sim-
ilar problems but with different SPH implementations can be found in [30,31].

For the first problem, the computation is performed in a domain —1/2 < x <1/2 and —1/2 <y < 1/2 using
fluids of the same density pqg = p; = 1 and equal viscosity # = 0.05. No-slip boundary conditions are applied at
all the domain boundaries. A droplet of radius R = 0.1875 is placed at the domain center and the symmetry
axes are x = 0 and y = 0. The surface-tension coefficient is « = 1 and the artificial sound speed is about 10.
To all particles a divergence-free initial velocity v, = Vo:(1 — j;z—r) exp(—#) and v, = V(1 - jo—zr) exp(—#) is
assigned, where Vy = 10, ro = 0.05, and r is the distance from the position (x, y) to the droplet center. In order
to study the convergence properties the calculation is carried out with 900, 3600, 14,400 particles, respectively.

Fig. 4 shows the positions of the droplet particles at t =0, t = 0.08, t = 0.16 and 7 = 0.26 for a total particle
number of 14,400. Comparing to the results of Morris [30] (their Fig. 6) at about the same resolution the
agreement is good while our results produce a more regular particle distribution which suggests a smoother
surface tension at the interface and smaller density fluctuations inside the droplet. Note that the hexagonal
lattice used by Morris matches better the initial droplet geometry than our rectangle lattice. The latter,
however, is easier to implement and quite suitable for symmetric shapes. Results with different resolutions
are compared up to time ¢ = 0.5 with 100 time samples, and the relative error between different resolutions

is calculated by Ey v = Z?:SO |fv — fav|, where fy and fy are selected global quantities. Fig. 5 compares the

variation of the center-of-mass position and velocity of the upper left 1/4 part of the droplet. Convergence
orders of 0.9 and 0.83, respectively, are obtained. Note there is no mass-loss error in the computations
demonstrating that the current method conserves mass.

For the second problem, the initially prescribed-divergence free velocity is decreased for small amplitude
oscillations. The droplet has a radius of R =0.2, a density of pg = 1, and a viscosity of nq = 5x 1072 The
gas phase has a density of p, = 10~3 and a viscosity of Hg=5X 10~*, which gives a density ratio of 1000
and a viscosity ratio of 100. The artificial sound speed is 20 or larger in order to decrease the effects of pressure
waves caused by artificial compressibility. The calculation is carried out with 3600 particles in total the droplet
is filled with 404 particles which is about 1/8 of that in [31]. For a free droplet oscillation, the theoretical rela-
®n,

6o *
the upper left 1/4 part of the droplet for o = 1. The measured period is 0.231 which is in good agreement with
the theoretical value of 0.229. Note the mass center position is slightly distorted by the high frequency but low
amplitude oscillations caused by artificial sound waves. The calculated relation between « and 7 is plotted in
Fig. 6(b) which shows that the largest deviation from the theoretical values is less than 5%.

tion between the period 7 and the surface tension is 1 = 2xn Fig. 6(a) shows the center-of-mass position of

3.2. Three-phase interaction

We consider two stationary problems with three phases. In the first problem all three phases are free to
move. In the second problem a solid wall with different wetting properties is considered as a separated phase.
According to the Young-Laplace theory, at equilibrium, the three phases and interfaces meet at the triple-
phase point and the angles between the interfaces satisfy
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Fig. 6. Droplet oscillation with py4/p, = 1000: (a) mass center position, (b) comparison of period between the numerical and analytic
results.

boundaries. The calculation is carried out with 1800 particles. Fig. 7(b) shows the positions of particles when
«'? = o'? = o® = 1. Note the angles between all the three interfaces recover 120°, which is the analytical solu-
tion of Eq. (39). The calculations also show that, when o®* increases, the angle 0'*'* decreases accordingly.
Fig. 7(c) indicates the positions of particles when o is increased to 1.717. Again, the measured interface
angles are in good agreement with the analytical solution which gives 6'*'*> =90° and 0'%% = '3} = 135°.
The consistency of the model using three different color indices for two phases is also examined. Fig. 7(d)
shows the positions of particles when there is no surface tension between fluid 1 and fluid 2. The interface
configuration gives 0'*'* =180° and 0'*** = 0'*** = 90° which is equivalent to that of a circular interface
between two phases.

For the second problem, the computation is performed on the domain —1 <x <1 and 0 <y <1. Fluid 2 is
set to occupy the region of —0.5 <x < 0.5 and 0 <y <0.3, and fluid 1 is set to occupy all the rest of the
computational domain while the lower boundary is a solid wall. Free-slip boundary conditions are applied
the domain boundaries and the symmetry axis is x = 0. The calculation is carried out with 1800 particles.
For o> =«""=1 and «®” =1.5 the measured contact angle 0 is close to 120° (see Fig. 8(a)), and for
2'? =o' =1 and o® = 0.5 the measured contact angle decreases to 60° (see Fig. 8(b)). Note that both results
are in good agreement with the analytic solutions of Eq. (40).
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a =107 m/s and the thermal fluctuation is introduced with a temperature of 7= 300 K. Periodic boundary
conditions are used in the x direction. The calculation is carried out with 900 particles and time steps of about
dr =107 s. To verify the thermal fluctuation the computation is first carried out without imposed shear. The
calculated results show that the system reaches the correct kinetic temperature within several ms (see
Fig. 12(a)). Fig. 12(b) shows the measured equilibrium momentum distribution which fits a Gaussian distri-
bution. The equilibrium results are employed as the initial condition for further computations. The upper
and lower walls are assigned with the velocity of v ==410"° m/s, respectively. The time-averaged velocity
profile along the y direction in steady state is plotted in Fig. 13(a). Note that there is considerable slip at
the fluid—fluid interface and the lower fluid—wall surface. The measured slip length between the two fluids is
about 24 nm and about 1/2 of b'%, which suggests an average effect of #'> and »*'. The measured slip velocity
at the lower wall is about 4.8 x 10~ m/s which corresponds to a slip length of 48 nm. Fig. 13(b) compares the
measured and input values for several slip lengths on the wall up to 75 nm and good agreement is found.
For the third problem, we consider a mesoscopic two-phase Couette flow in a 0.5 pm X 2 pm channel. The
two fluids have the same density and viscosity of 1000 kg/m>® and 10~ kg/ms, respectively. The fluid—fluid
surface-tension coefficient and the two fluid-wall interface surface energy are all set as 10~° Pa m and the static
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Fig. 12. Mesoscopic thermal fluctuations: (a) time evolution for kinetic temperature, (b) equilibrium momentum distribution with
dimensionless unit.
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accurate formulations our method suggests a way for implementing SPH methods with higher order of
accuracy.
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